VIPP stands for values created in fibre-based processes and products and is a unique partnership in Swedish higher education. This is a long-term project financed by the Knowledge Foundation and the partner companies. The partnership was launched in 2011 and presently 18 doctoral students are busy with as many research projects. Three strong industrial graduate school environments:

- pulp, paper and graphic technology
- environment and energy
- service innovation and customer satisfaction

Here the disciplines of chemistry, chemical engineering, environmental and energy systems, physics, mechanical and materials engineering and the Service Research Center (CTF) at Karlstad University are collaborating. The doctoral students share their time between Karlstad University and their respective company. Their academic supervisors and industrial mentors participate actively throughout the whole process.
Research is a joint production process in which the university and industry consider the needs of both partners in the initial planning.

Research has a focus on innovative products and services of the future.

"We need skilled and professional researchers in academia and industry, researchers with the ability to cooperate, who have deep expertise combined with a broad vision. I am convinced that the VIPP doctoral students will be able to meet these needs in the areas of technology, service innovation and sustainable development."

Louise Törnefalk Svanqvist, chair of the VIPP board

WE ARE PARTNERS IN VIPP INDUSTRIAL GRADUATE SCHOOL

PROJEKT
• A new sensor for improved fibreline control
 Caroline Wilke, BTG Instruments
• Efficient drying of tissue paper
 Anders Ottosson, Valmet
• Investigation of the non-uniformity during dewatering and drying of tissue paper grades
 Aron Tysén, Innventia
• Predicting flexographic print quality from substrate properties with special focus on liquid packaging boards
 Sofia Thorman, Innventia
• Food-packaging barrier from renewable resources
 Åsa Nyflött, Stora Enso Group R&D
• Fresh fruit and vegetable waste in the food supply chain – quantification and causes
 Lisa Mattsson, BillerudKorsnäs
• Systems analysis of biorefineries
 Christer Gustavsson, Pöyry Sweden

• Energy efficient wastewater-treatment in pulp-and papermills through pre-treatment using separation
 Mattias From-Aldaron, Stora Enso Skoghall

• Reduction of the energy use in a tumble dryer with heat –pump technology
 Peder Bengtsson, Asko Appliances

• Maximised product value from lignocellulosic raw material through next generation of sulphite pulping
 Raghu Deshpande, Domsjö Fabriker/MoRe Research

• Renewable packaging material
 Muhammad Asif Javed, Karlstad University

• Service innovations in industrial networks
 Per Myhrén, SSG Standard Solutions Group

• Design and utilization of a high speed creping simulator for tissue
 Pyry Hämäläinen, Kemira

• Oxidative pre-treatments with the intention to facilitate the microfibril separation and lower the energy demand
 Pia Hellström, Akzo Nobel Pulp and Performance Chemicals

• Increased availability and reduced energy consumption of the dryer at wood pellet production
 Helena Johansson Cider, Härjéåns Energi

• Systems analysis of Multi-product pulp mills
 Jonas Kihlman, Pöyry Sweden

• Energy efficiency at production mills
 Daniel Ekåge, Stora Enso Group R&D

• Interpreting the customer’s value experience - The starting point for service innovation
 David Joelsson, SP Sveriges Tekniska Forskningsinstitut
CONTACT
Professor Lars Järnström, Director
lars.jarnstrom@kau.se
Phone: +46 (0) 54-700 16 25